Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566285

RESUMO

The stress-responsive, SK5 subclass, dehydrin gene, CaDHN, has been identified from the Arctic mouse-ear chickweed Cerastium arcticum. CaDHN contains an unusual single cysteine residue (Cys143), which can form intermolecular disulfide bonds. Mutational analysis and a redox experiment confirmed that the dimerization of CaDHN was the result of an intermolecular disulfide bond between the cysteine residues. The biochemical and physiological functions of the mutant C143A were also investigated by in vitro and in vivo assays using yeast cells, where it enhanced the scavenging of reactive oxygen species (ROS) by neutralizing hydrogen peroxide. Our results show that the cysteine residue in CaDHN helps to enhance C. arcticum tolerance to abiotic stress by regulating the dimerization of the intrinsically disordered CaDHN protein, which acts as a defense mechanism against extreme polar environments.


Assuntos
Caryophyllaceae , Cisteína , Cisteína/química , Dissulfetos/química , Peróxido de Hidrogênio , Oxirredução
2.
Int J Biol Macromol ; 206: 203-212, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35183603

RESUMO

A novel bifunctional ß-lactamase/esterase (LgLacI), which is capable of hydrolyzing ß-lactam-containing antibiotics including ampicillin, oxacillin, and cefotaxime as well as synthesizing biodiesels, was cloned from Lactococcus garvieae. Unlike most bacterial esterases/lipases that have G-x-S-x-G motif, LgLacI, which contains S-x-x-K catalytic motif, has sequence similarities to bacterial family VIII esterase as well as ß-lactamases. The catalytic properties of LgLacI were explored using a wide range of biochemical methods including spectroscopy, assays, structural modeling, mutagenesis, and chromatography. We confirmed the bifunctional property of LgLacI hydrolyzing both esters and ß-lactam antibiotics. This study provides novel perspectives into a bifunctional enzyme from L. garvieae, which can degrade ß-lactam antibiotics with high esterase activity.


Assuntos
Esterases , beta-Lactamases , Sequência de Aminoácidos , Antibacterianos/farmacologia , Cefotaxima , Esterases/química , Lactococcus , beta-Lactamases/química
3.
Int J Biol Macromol ; 165(Pt A): 1139-1148, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33031847

RESUMO

The YbfF esterase family, which has a bifurcated binding pocket for diverse ligands, could serve as excellent biocatalysts in industrial and biotechnological applications. Here, the identification, characterization, and immobilization of a novel YbfF esterase (YbfFHalomonas elongata) from Halomonas elongata DSM 2581 is reported. Biochemical characterization of YbfF was carried out using activity staining, chromatographic analysis, kinetic analysis, activity assay, acetic acid release, and pH-indicator-based hydrolysis. YbfFH.elongata displayed broad substrate specificity, including that for p-nitrophenyl esters, glucose pentaacetate, tert-butyl acetate, and ß-lactam-containing compounds, with high efficiency. Based on a homology model of YbfFH.elongata, Trp237 in the substrate-binding pocket, a critical residue for catalytic activity and substrate specificity was identified and characterized. Furthermore, crosslinked enzyme aggregates and nanoflower formation were explored to enhance the chemical stability and recyclability of YbfFH.elongata. The present study is the first report of a YbfF esterase from extremophiles, and explains its protein stability, catalytic activity, substrate specificities and diversities, kinetics, functional residues, amyloid formation, and immobilization.


Assuntos
Proteínas de Bactérias/química , Enzimas Imobilizadas/química , Esterases/química , Halomonas/enzimologia , Proteínas de Bactérias/genética , Enzimas Imobilizadas/genética , Esterases/genética , Esterases/isolamento & purificação , Cinética , Estabilidade Proteica , Especificidade por Substrato/genética
4.
J Microbiol ; 58(9): 772-779, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32870483

RESUMO

In spore forming microbes, germination protease (GPR) plays a key role in the initiation of the germination process. A critical step during germination is the degradation of small acid-soluble proteins (SASPs), which protect spore DNA from external stresses (UV, heat, low temperature, etc.). Inactive zymogen GPR can be activated by autoprocessing of the N-terminal pro-sequence domain. Activated GPR initiates the degradation of SASPs; however, the detailed mechanisms underlying the activation, catalysis, regulation, and substrate recognition of GPR remain elusive. In this study, we determined the crystal structure of GPR from Paenisporosarcina sp. TG-20 (PaGPR) in its inactive form at a resolution of 2.5 A. Structural analysis showed that the active site of PaGPR is sterically occluded by an inhibitory loop region (residues 202-216). The N-terminal region interacts directly with the self-inhibitory loop region, suggesting that the removal of the N-terminal pro-sequence induces conformational changes, which lead to the release of the self-inhibitory loop region from the active site. In addition, comparative sequence and structural analyses revealed that PaGPR contains two highly conserved Asp residues (D123 and D182) in the active site, similar to the putative aspartic acid protease GPR from Bacillus megaterium. The catalytic domain structure of PaGPR also shares similarities with the sequentially non-homologous proteins HycI and HybD. HycI and HybD are metal-loproteases that also contain two Asp (or Glu) residues in their active site, playing a role in metal binding. In summary, our results provide useful insights into the activation process of PaGPR and its active conformation.


Assuntos
Endopeptidases/metabolismo , Planococáceas/crescimento & desenvolvimento , Estrutura Terciária de Proteína/fisiologia , Esporos Bacterianos/crescimento & desenvolvimento , Sequência de Aminoácidos , Bacillus megaterium/genética , Bacillus megaterium/crescimento & desenvolvimento , Domínio Catalítico/fisiologia , Cristalografia por Raios X , DNA Bacteriano/genética , Endopeptidases/genética , Precursores Enzimáticos/metabolismo , Planococáceas/genética , Alinhamento de Sequência
5.
Biotechnol Biofuels ; 13: 55, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190120

RESUMO

BACKGROUND: Biodiesel and flavor compound production using enzymatic transesterification by microbial lipases provides mild reaction conditions and low energy cost compared to the chemical process. SGNH-type lipases are very effective catalysts for enzymatic transesterification due to their high reaction rate, great stability, relatively small size for convenient genetic manipulations, and ease of immobilization. Hence, it is highly important to identify novel SGNH-type lipases with high catalytic efficiencies and good stabilities. RESULTS: A promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from Halocynthiibacter arcticus was catalytically characterized and functionally explored. HaSGNH1 displayed broad substrate specificity that included tert-butyl acetate, glucose pentaacetate, and p-nitrophenyl esters with excellent stability and high efficiency. Important amino acids (N83, M86, R87, F131, and I173F) around the substrate-binding pocket were shown to be responsible for catalytic activity, substrate specificity, and reaction kinetics. Moreover, immobilized HaSGNH1 was used to produce high yields of butyl and oleic esters. CONCLUSIONS: This work provides a molecular understanding of substrate specificities, catalytic regulation, immobilization, and industrial applications of a promiscuous cold-adapted SGNH-type lipase (HaSGNH1) from H. arcticus. This is the first analysis on biodiesel and flavor synthesis using a cold-adapted halophilic SGNH-type lipase from a Halocynthiibacter species.

6.
Int J Mol Sci ; 21(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877740

RESUMO

The SGNH family esterases are highly effective biocatalysts due to their strong catalytic efficiencies, great stabilities, relatively small sizes, and ease of immobilization. Here, a novel SGNH family esterase (LaSGNH1) from Lactobacillus acidophilus NCFM, which has homologues in many Lactobacillus species, was identified, characterized, and immobilized. LaSGNH1 is highly active towards acetate- or butyrate-containing compounds, such as p-nitrophenyl acetate or 1-naphthyl acetate. Enzymatic properties of LaSGNH1, including thermal stability, optimum pH, chemical stability, and urea stability, were investigated. Interestingly, LaSGNH1 displayed a wide range of substrate specificity that included glyceryl tributyrate, tert-butyl acetate, and glucose pentaacetate. Furthermore, immobilization of LaSGNH1 by crosslinked enzyme aggregates (CLEAs) showed enhanced thermal stability and efficient recycling property. In summary, this work paves the way for molecular understandings and industrial applications of a novel SGNH family esterase (LaSGNH1) from Lactobacillus acidophilus.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas Imobilizadas/metabolismo , Lactobacillus acidophilus/enzimologia , Fosfolipases/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Sequência Conservada , Estabilidade Enzimática , Enzimas Imobilizadas/química , Lactobacillus acidophilus/classificação , Lactobacillus acidophilus/genética , Fosfolipases/química , Ligação Proteica , Especificidade por Substrato
7.
Biomolecules ; 9(12)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779208

RESUMO

Molecular information about family VIII esterases, which have similarities with class C ß-lactamases and penicillin-binding proteins, remains largely unknown. In this study, a novel family VIII esterase with ß-lactamase activity (PsEstA) from Paenibacillus sp. was characterized using several biochemical and biophysical methods. PsEstA was effective on a broad range of substrates including tertiary butyl acetate, glyceryl tributyrate, glucose pentaacetate, olive oil, and p-nitrophenyl esters. Additionally, PsEstA hydrolyzed nitrocefin, cefotaxime, and 7-aminocephalosporanic acid. Interestingly, two forms of immobilized PsEstA (CLEAs-PsEstA and mCLEAs-PsEstA) showed high recycling property and enhanced stability, but hybrid nanoflowers (hNFs) of PsEstA require improvement. This study provides a molecular understanding of substrate specificities, catalytic regulation, and immobilization of PsEstA, which can be efficiently used in biotechnological applications.


Assuntos
Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Paenibacillus/enzimologia , beta-Lactamases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/ultraestrutura , Catálise , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Mutação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Penicilinas/química , Filogenia , Especificidade por Substrato/genética
8.
Biomolecules ; 9(11)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694309

RESUMO

Bacterial hormone-sensitive lipases (bHSLs), which are homologous to the catalytic domains of human HSLs, have received great interest due to their uses in the preparation of highly valuable biochemicals, such as drug intermediates or chiral building blocks. Here, a novel cold-active HSL from Halocynthiibacter arcticus (HaHSL) was examined and its enzymatic properties were investigated using several biochemical and biophysical methods. Interestingly, HaHSL acted on a large variety of substrates including tertiary alcohol esters and fish oils. Additionally, this enzyme was highly tolerant to high concentrations of salt, detergents, and glycerol. Furthermore, immobilized HaHSL retained its activity for up to six cycles of use. Homology modeling suggested that aromatic amino acids (Trp23, Tyr74, Phe78, Trp83, and Phe245) in close proximity to the substrate-binding pocket were important for enzyme activity. Mutational analysis revealed that Tyr74 played an important role in substrate specificity, thermostability, and enantioselectivity. In summary, the current study provides an invaluable insight into the novel cold-active HaHSL from H. arcticus, which can be efficiently and sustainably used in a wide range of biotechnological applications.


Assuntos
Clonagem Molecular/métodos , Rhodobacteraceae/enzimologia , Esterol Esterase/química , Esterol Esterase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Ésteres/metabolismo , Óleos de Peixe/metabolismo , Modelos Moleculares , Conformação Molecular , Mutação , Rhodobacteraceae/genética , Esterol Esterase/genética , Homologia Estrutural de Proteína , Especificidade por Substrato , Tirosina/metabolismo
9.
Microb Cell Fact ; 18(1): 140, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31426813

RESUMO

BACKGROUND: S-Formylglutathione is hydrolyzed to glutathione and formate by an S-formylglutathione hydrolase (SFGH) (3.1.2.12). This thiol esterase belongs to the esterase family and is also known as esterase D. SFGHs contain highly conserved active residues of Ser-Asp-His as a catalytic triad at the active site. Characterization and investigation of SFGH from Antarctic organisms at the molecular level is needed for industrial use through protein engineering. RESULTS: A novel cold-active S-formylglutathione hydrolase (SfSFGH) from Shewanella frigidimarina, composed of 279 amino acids with a molecular mass of ~ 31.0 kDa, was characterized. Sequence analysis of SfSFGH revealed a conserved pentapeptide of G-X-S-X-G found in various lipolytic enzymes along with a putative catalytic triad of Ser148-Asp224-His257. Activity analysis showed that SfSFGH was active towards short-chain esters, such as p-nitrophenyl acetate, butyrate, hexanoate, and octanoate. The optimum pH for enzymatic activity was slightly alkaline (pH 8.0). To investigate the active site configuration of SfSFGH, we determined the crystal structure of SfSFGH at 2.32 Å resolution. Structural analysis shows that a Trp182 residue is located at the active site entrance, allowing it to act as a gatekeeper residue to control substrate binding to SfSFGH. Moreover, SfSFGH displayed more than 50% of its initial activity in the presence of various chemicals, including 30% EtOH, 1% Triton X-100, 1% SDS, and 5 M urea. CONCLUSIONS: Mutation of Trp182 to Ala allowed SfSFGH to accommodate a longer chain of substrates. It is thought that the W182A mutation increases the substrate-binding pocket and decreases the steric effect for larger substrates in SfSFGH. Consequently, the W182A mutant has a broader substrate specificity compared to wild-type SfSFGH. Taken together, this study provides useful structure-function data of a SFGH family member and may inform protein engineering strategies for industrial applications of SfSFGH.


Assuntos
Shewanella/enzimologia , Tioléster Hidrolases/química , Domínio Catalítico , Clonagem Molecular , Escherichia coli/genética , Formiatos/metabolismo , Glutationa/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1438-1448, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325637

RESUMO

In Neisseria sp., SGNH family esterases are involved in bacterial pathogenesis as well as cell wall peptidoglycan maturation. Here, a novel enantioselective SGNH family esterase (NmSGNH1) from Neisseria meningitidis, which has sequence similarity to carbohydrate esterase (CE3) family, was catalytically characterized and functionally explored. NmSGNH1 exhibited a wide range of substrate specificities including naproxol acetate, tert-butyl acetate, glucose pentaacetate as well as p-nitrophenyl esters. Deletion of C-terminal residues (NmSGNH1Δ11) led to the altered substrate specificity, reduced catalytic activity, and increased thermostability. Furthermore, a hydrophobic residue of Leu92 in the substrate-binding pocket was identified to be critical in catalytic activity, thermostability, kinetics, and enantioselectivity. Interestingly, immobilization of NmSGNH1 by hybrid nanoflowers (hNFs) and crosslinked enzyme aggregates (CLEAs) showed increased level of activity, recycling property, and enhanced stability. Finally, synthesis of butyl acetate, oleic acid esters, and fatty acid methyl esters (FAMEs) were verified. In summary, this work provides a molecular understanding of substrate specificities, catalytic regulation, immobilization, and industrial applications of a novel SGNH family esterase from Neisseria meningitidis.


Assuntos
Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Neisseria meningitidis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estabilidade Enzimática , Esterases/química , Esterases/genética , Ésteres/metabolismo , Humanos , Meningite Meningocócica/microbiologia , Modelos Moleculares , Neisseria meningitidis/química , Neisseria meningitidis/genética , Mutação Puntual , Alinhamento de Sequência , Estereoisomerismo , Especificidade por Substrato
11.
Int J Biol Macromol ; 136: 1042-1051, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229546

RESUMO

Cold-active enzymes with distinctive properties from a psychrophilic Exiguobacterium antarcticum B7 could be excellent biocatalysts in industrial and biotechnological processes. Here, the characterization, immobilization, and site-directed mutagenesis of a novel cold-active acetylesterase (EaAcE) from E. antarcticum B7 is reported. EaAcE does not belong to any currently known lipase/esterase family, although there are some sequence similarities with family III and V members. Biochemical characterization of EaAcE was carried out using activity staining, mass spectrometry analysis, circular dichroism spectra, freeze-thaw experiments, kinetic analysis, acetic acid release assays, and enantioselectivity determination. Furthermore, immobilization of EaAcE using four different approaches was explored to enhance its thermal stability and recyclability. Based on a homology model of EaAcE, four mutations (F45A, S118A, S141A, and T216A) within the substrate-binding pocket were investigated to elucidate their roles in EaAcE catalysis and substrate specificity. This work has provided invaluable information on the properties of EaAcE, which can now be used to understand the acetylesterase enzyme family.


Assuntos
Acetilesterase/química , Acetilesterase/metabolismo , Bacillaceae/enzimologia , Temperatura Baixa , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Mutagênese , Acetilesterase/genética , Sequência de Aminoácidos , Biologia Computacional , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Cinética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
12.
Biochem Biophys Res Commun ; 509(3): 773-778, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30630595

RESUMO

Fumarylacetoacetate hydrolase (FAH) is essential for the degradation of aromatic amino acids as well as for the cleavage of carbon-carbon bonds in metabolites or small organic compounds. Here, the X-ray crystal structure of EaFAH, a dimeric fumarylacetoacetate hydrolase from Exiguobacterium antarcticum, was determined, and its functional properties were investigated using biochemical methods. EaFAH adopts a mixed ß-sandwich roll fold with a highly flexible lid region (Val73-Leu94), and an Mg2+ ion is bound at the active site by coordinating to the three carboxylate oxygen atoms of Glu124, Glu126, and Asp155. The hydrolytic activity of EaFAH toward various substrates, including linalyl acetate was investigated using native polyacrylamide gel electrophoresis, activity staining, gel filtration, circular dichroism spectroscopy, fluorescence, and enzyme assays.


Assuntos
Bacillaceae/química , Proteínas de Bactérias/química , Hidrolases/química , Sequência de Aminoácidos , Bacillaceae/genética , Bacillaceae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Hidrolases/genética , Hidrolases/metabolismo , Hidrólise , Magnésio/metabolismo , Modelos Moleculares , Filogenia , Conformação Proteica , Multimerização Proteica , Alinhamento de Sequência , Especificidade por Substrato
13.
Arch Biochem Biophys ; 663: 132-142, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30653961

RESUMO

In mammals, hormone sensitive lipase (EC 3.1.1.79, HSL) catalyzes the hydrolysis of triacylglycerols as well as the modifications of a broad range of hydrophobic substrates containing ester linkages. HSLs are composed of an N-terminal ligand-binding domain and a C-terminal catalytic domain. Bacterial hormone-sensitive lipases (bHSLs), which are homologous to the C-terminal domain of mammalian HSLs, have a catalytic triad composed of Ser, His, and Asp. Here, a novel cold-active hormone-sensitive lipase (SaHSL) from Salinisphaera sp. P7-4 was identified, functionally characterized, and subjected to site-directed mutations. The enzymatic properties of SaHSL were investigated using several biochemical and biophysical methods. Interestingly, SaHSL exhibited the ability to act on a broad range of substrates including glyceryl tributyrate and glucose pentaacetate. Homology modeling and site-directed mutagenesis indicated that hydrophobic residues (Leu156, Phe164, and Val204) around the substrate-binding pocket were involved in substrate recognition. In addition, highly conserved amino acids (Glu201, Arg207, Leu208, and Asp227) in the regulatory regions were found to be responsible for substrate specificity, thermostability, and enantioselectivity. In summary, this work provides new insights into the understanding of the C-terminal domain of HSL family and evidence that SaHSL can be used in a wide range of industrial applications.


Assuntos
Temperatura Baixa , Gammaproteobacteria/enzimologia , Mutagênese Sítio-Dirigida , Esterol Esterase/metabolismo , Sequência de Aminoácidos , Biocatálise , Genes Bacterianos , Cinética , Modelos Moleculares , Filogenia , Esterol Esterase/genética , Esterol Esterase/isolamento & purificação , Especificidade por Substrato
14.
PLoS One ; 13(10): e0206260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30379876

RESUMO

Cold-active acetyl xylan esterases allow for reduced bioreactor heating costs in bioenergy production. Here, we isolated and characterized a cold-active acetyl xylan esterase (PbAcE) from the psychrophilic soil microbe Paenibacillus sp. R4. The enzyme hydrolyzes glucose penta-acetate and xylan acetate, reversibly producing acetyl xylan from xylan, and it shows higher activity at 4°C than at 25°C. We solved the crystal structure of PbAcE at 2.1-Å resolution to investigate its active site and the reason for its low-temperature activity. Structural analysis showed that PbAcE forms a hexamer with a central substrate binding tunnel, and the inter-subunit interactions are relatively weak compared with those of its mesophilic and thermophilic homologs. PbAcE also has a shorter loop and different residue composition in the ß4-α3 and ß5-α4 regions near the substrate binding site. Flexible subunit movements and different active site loop conformations may enable the strong low-temperature activity and broad substrate specificity of PbAcE. In addition, PbAcE was found to have strong activity against antibiotic compound substrates, such as cefotaxime and 7-amino cephalosporanic acid (7-ACA). In conclusion, the PbAcE structure and our biochemical results provide the first example of a cold-active acetyl xylan esterase and a starting template for structure-based protein engineering.


Assuntos
Acetilesterase/química , Acetilesterase/metabolismo , Temperatura Baixa , Paenibacillus/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Alinhamento de Sequência , Especificidade por Substrato
15.
Biochim Biophys Acta Gen Subj ; 1862(1): 197-210, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29051067

RESUMO

Lactic acid bacteria, which are involved in the fermentation of vegetables, meats, and dairy products, are widely used for the productions of small organic molecules and bioactive peptides. Here, a novel acetylesterase (LaAcE) from Lactobacillus acidophilus NCFM was identified, functionally characterized, immobilized, and subjected to site-directed mutagenesis for biotechnological applications. The enzymatic properties of LaAcE were investigated using biochemical and biophysical methods including native polyacrylamide gel electrophoresis, acetic acid release, biochemical assays, enzyme kinetics, and spectroscopic methods. Interestingly, LaAcE exhibited the ability to act on a broad range of substrates including glucose pentaacetate, glyceryl tributyrate, fish oil, and fermentation-related compounds. Furthermore, immobilization of LaAcE showed good recycling ability and high thermal stability compared with free LaAcE. A structural model of LaAcE was used to guide mutational analysis of hydrophobic substrate-binding region, which was composed of Leu156, Phe164, and Val204. Five mutants (L156A, F164A, V204A, L156A/F164A, and L156A/V204A) were generated and investigated to elucidate the roles of these hydrophobic residues in substrate specificity. This work provided valuable insights into the properties of LaAcE, and demonstrated that LaAcE could be used as a model enzyme of acetylesterase in lactic acid bacteria, making LaAcE a great candidate for industrial applications.


Assuntos
Acetilesterase , Proteínas de Bactérias , Enzimas Imobilizadas , Lactobacillus acidophilus , Modelos Moleculares , Mutação de Sentido Incorreto , Acetilesterase/química , Acetilesterase/genética , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Lactobacillus acidophilus/enzimologia , Lactobacillus acidophilus/genética , Especificidade por Substrato/genética
16.
J Microbiol Biotechnol ; 27(11): 1907-1915, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29032653

RESUMO

Lipases are important enzymes with biotechnological applications in dairy, detergent, food, fine chemicals, and pharmaceutical industries. Specifically, hormone-sensitive lipase (HSL) is an intracellular lipase that can be stimulated by several hormones, such as catecholamine, glucagon, and adrenocorticotropic hormone. Bacterial hormone-sensitive lipases (bHSLs), which are homologous to the C-terminal domain of HSL, have α/ß-hydrolase fold with a catalytic triad composed of His, Asp, and Ser. These bHSLs could be used for a wide variety of industrial applications because of their high activity, broad substrate specificity, and remarkable stability. In this review, the relationships among HSLs, the microbiological origins, the crystal structures, and the biotechnological properties of bHSLs are summarized.


Assuntos
Bactérias/enzimologia , Biotecnologia , Microbiologia Industrial , Esterol Esterase/química , Hormônio Adrenocorticotrópico/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Domínio Catalítico , Catecolaminas/farmacocinética , Estabilidade Enzimática , Glucagon/metabolismo , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
17.
PLoS One ; 12(1): e0169540, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125606

RESUMO

A novel microbial esterase, EaEST, from a psychrophilic bacterium Exiguobacterium antarcticum B7, was identified and characterized. To our knowledge, this is the first report describing structural analysis and biochemical characterization of an esterase isolated from the genus Exiguobacterium. Crystal structure of EaEST, determined at a resolution of 1.9 Å, showed that the enzyme has a canonical α/ß hydrolase fold with an α-helical cap domain and a catalytic triad consisting of Ser96, Asp220, and His248. Interestingly, the active site of the structure of EaEST is occupied by a peracetate molecule, which is the product of perhydrolysis of acetate. This result suggests that EaEST may have perhydrolase activity. The activity assay showed that EaEST has significant perhydrolase and esterase activity with respect to short-chain p-nitrophenyl esters (≤C8), naphthyl derivatives, phenyl acetate, and glyceryl tributyrate. However, the S96A single mutant had low esterase and perhydrolase activity. Moreover, the L27A mutant showed low levels of protein expression and solubility as well as preference for different substrates. On conducting an enantioselectivity analysis using R- and S-methyl-3-hydroxy-2-methylpropionate, a preference for R-enantiomers was observed. Surprisingly, immobilized EaEST was found to not only retain 200% of its initial activity after incubation for 1 h at 80°C, but also retained more than 60% of its initial activity after 20 cycles of reutilization. This research will serve as basis for future engineering of this esterase for biotechnological and industrial applications.


Assuntos
Bacillaceae/química , Proteínas de Bactérias/química , Enzimas Imobilizadas/química , Esterases/química , Nitrofenóis/química , Ácido Peracético/química , Sequência de Aminoácidos , Bacillaceae/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Esterases/genética , Esterases/metabolismo , Expressão Gênica , Temperatura Alta , Cinética , Modelos Moleculares , Mutação , Nitrofenóis/metabolismo , Ácido Peracético/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Especificidade por Substrato , Termodinâmica
18.
Int J Biol Macromol ; 96: 560-568, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28040493

RESUMO

Lactic acid bacteria (LAB) are sources of a large variety of microbial ester hydrolases because they can produce a wide range of short-chain esters, phenolic alcohols, and fatty acids. Here, a novel SGNH-type esterase (LpSGNH1) from Lactobacillus plantarum WCFS1 was identified, functionally characterized, and immobilized for biotechnological applications. Homologs of LpSGNH1 are also found in many lactic acid bacteria (LAB) species. Biochemical features of LpSGNH1 were investigated using mass spectrometry, gel filtration chromatography, enzyme kinetics, fluorescence, and circular dichroism (CD) spectroscopy. LpSGNH1 were retained its activity under conditions that would be encountered during fermentations. Interestingly, LpSGNH1 exhibited the ability to act on a broad range of substrates including ketoprofen acetate, cefotaxime (CTX), and 7-aminocephalosporanic acid (7-ACA) as well as glucose pentaacetate, acetylxylan, and acetylalginate, which make LpSGNH1 a great candidate for extensive industrial applications. Furthermore, cross-linked enzyme aggregates of LpSGNH1 (CLEA-LpSGNH1) displayed recycling ability and thermal stability compared to free LpSGNH1, which could be useful for industrial applications. This work highlights the importance of LpSGNH1 in the preparation of commercial compounds, and LpSGNH1 can be used as a model system of SGNH esterases in lactic acid bacteria.


Assuntos
Esterases/química , Esterases/metabolismo , Lactobacillus plantarum/enzimologia , Sequência de Aminoácidos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Análise de Sequência
19.
Sci Rep ; 6: 37978, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905486

RESUMO

Considering that the prevalence of antibiotic-resistant pathogenic bacteria is largely increasing, a thorough understanding of penicillin-binding proteins (PBPs) is of great importance and crucial significance because this enzyme family is a main target of ß-lactam-based antibiotics. In this work, combining biochemical and structural analysis, we present new findings that provide novel insights into PBPs. Here, a novel PBP homologue (CcEstA) from Caulobacter crescentus CB15 was characterized using native-PAGE, mass spectrometry, gel filtration, CD spectroscopy, fluorescence, reaction kinetics, and enzyme assays toward various substrates including nitrocefin. Furthermore, the crystal structure of CcEstA was determined at a 1.9 Å resolution. Structural analyses showed that CcEstA has two domains: a large α/ß domain and a small α-helix domain. A nucleophilic serine (Ser68) residue is located in a hydrophobic groove between the two domains along with other catalytic residues (Lys71 and Try157). Two large flexible loops (UL and LL) of CcEstA are proposed to be involved in the binding of incoming substrates. In conclusion, CcEstA could be described as a paralog of the group that contains PBPs and ß-lactamases. Therefore, this study could provide new structural and functional insights into the understanding this protein family.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Caulobacter crescentus/enzimologia , Clonagem Molecular/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Caulobacter crescentus/química , Caulobacter crescentus/genética , Dicroísmo Circular , Cristalografia por Raios X , Cinética , Modelos Moleculares , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Estrutura Secundária de Proteína , Serina/metabolismo
20.
FEBS Lett ; 590(8): 1242-52, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26991446

RESUMO

Carbohydrate acetylesterases, which have a highly specific role among plant-interacting bacterial species, remove the acetyl groups from plant carbohydrates. Here, we determined the crystal structure of Est24, an octameric carbohydrate acetylesterase from Sinorhizobium meliloti, at 1.45 Å resolution and investigated its biochemical properties. The structure of Est24 consisted of five parallel ß strands flanked by α helices, which formed an octameric assembly with two distinct interfaces. The deacetylation activity of Est24 and its mutants around the substrate-binding pocket was investigated using several substrates, including glucose pentaacetate and acetyl alginate. Elucidation of the structure-function relationships of Est24 could provide valuable opportunities for biotechnological explorations.


Assuntos
Acetilesterase/química , Acetilesterase/metabolismo , Carboidratos/química , Sinorhizobium meliloti/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Análise Mutacional de DNA , Cetoprofeno/metabolismo , Proteínas Mutantes/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA